## Utility of calcareous microfossil assemblages to date and provenance fossil marine reptile specimens in museum collections

Ian Boomer<sup>\*1</sup>, Philip Copestake<sup>2</sup>, Nigel Larkin<sup>3</sup>, Dean Lomax<sup>4</sup>

<sup>1</sup>Earth Sciences, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK. <sup>2</sup>Merlin Energy Resources Ltd, Newberry House, New St, Ledbury HR8 2EJ, UK.

<sup>3</sup>University of Reading, School of Biological Sciences, Whiteknights, Reading RG6 6AH, UK.

<sup>4</sup>Department of Earth & Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.



**Abstract** Many museums hold palaeontological specimens such as the large marine vertebrates of the Mesozoic (ichthyosaurs, plesiosaurs, pliosaurs, etc), but some of these lack details regarding their collection locality, level or age, this is especially the case for specimens collected in the 19<sup>th</sup> and early 20<sup>th</sup> centuries. Taking a forensic approach to this problem, and where fragments of matrix can be spared, micropalaeontology can fill-in some of the knowledge gaps, thus enhancing the scientific value of these specimens. Over the last few years, we have examined Early Jurassic specimens from British collections in an attempt to recover details regarding their stratigraphical provenance, geological age and possible geographical origin, based on the associated microfossils (ostracods and foraminifera). This approach is not always successful (especially in well-cemented limestone) but in some cases a few grams of mudstone matrix recovered from an inconspicuous part of the specimen (such as the underside) can provide a useful assemblage of calcareous microfossils. We provide examples to show how effective this approach can be and suggest that such collaborations could be instigated by micropalaeontologists around the world to help support scientific research in their local museums.

*Ichthyosaurs* were marine reptiles (250-90 Ma, Triassic-Early Cretaceous), they were active predators with similarities to modern dolphins. Ichthyosaurs possessed large eyes and large vertical tails, they were air-breathing, warm-blooded & viviparous. We have examined microfossil samples from a number of ichthyosaurs from British museums to help determine their age, environment of deposition and possible geographical origin (Lomax *et al.* 2016, *Hist. Biol.*, **31**, 600-609; Lomax *et al.*, *Geol. J.*, **54**, 83-90).



Case Study 1: Lapworth Museum of Geology, University of Birmingham



| HISTORICAL BIOLOGY<br>2019, VOL. 31, NO. 5, 600–609<br>https://doi.org/10.1080/08912963.2017.1382488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Taylor & Francis<br>Taylor & Francis Group |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Check for updates                          |  |  |  |  |
| The first known needed to be the second |                                            |  |  |  |  |

Study of a neonate *Ichthyosaurus communis* (BU 5289). With a sample of about 8-10 g we recovered a good calc-micro assemblage.



Dean Lomax with BU 5289

1–3. Paralingulina tenera tenera, 4. Nodosaria mitis, 5. Ichthyolaria terquemi, 6. Marginulina prima insignis, 7. Marginulina prima incisa, 8. Mesodentlina matutina, 9. Planularia inaequistriata, 10. Ogmoconchella nasuta, 11. Polycope pumicosa, 12. Astacolus speciosus, 13. Paracypris sp., 14. Ogmoconcha hagenowi, 15. Monoceratina frentzeni.



## Case Study 2: Birmingham Science Museum.

Ichthyosaur, from Shipstonon Stour, Warwickshire.

Diverse assemblage of foraminifera but relatively few ostracods. These indicate latest Angulata to Bucklandi chronozones (late Hettangian to early Sinemurian).



| Ci<br>SI<br>N | ase<br>hej<br>Ius | e Study<br>field<br>seum. | P. inaequistriata | I. brizaeformis | I. terquemi sulcata (F??) | M matutina | P tenera tenera | Nanacythere elegans | Only 1 ostracod,<br>but it was crucial<br>to refining the ag<br>Angulata to<br>Bucklandi |
|---------------|-------------------|---------------------------|-------------------|-----------------|---------------------------|------------|-----------------|---------------------|------------------------------------------------------------------------------------------|
|               | AN                | obtusum                   |                   | 1               | 1                         |            |                 |                     | Chronozone (late                                                                         |
|               | IN RI             | turneri                   |                   |                 |                           |            |                 |                     | Hettangian-early                                                                         |
|               | NEM               | semicostatum              |                   |                 |                           | ļ          |                 |                     | Sinemurian).                                                                             |
|               | SIR               | bucklandi                 |                   |                 |                           |            |                 |                     |                                                                                          |
|               | AN                | angulata                  |                   |                 |                           |            |                 |                     |                                                                                          |
|               | NGI               | liasicus                  |                   |                 |                           |            |                 | •                   | A. Nanacythere ele                                                                       |
|               | TTA               | planorbis                 |                   |                 |                           |            |                 |                     | matutina, C. Ichth                                                                       |
|               | ШШ                | tillmani                  |                   |                 |                           |            |                 |                     | Planularia inaeaui                                                                       |





A. Nanacythere elegans, B. Mesodentalina matutina, C. Ichthyolaria terquemi, D. Planularia inaequistriata.

**Case Study 4: Rutland Water.** The 'Rutland Sea Dragon' (*Temnodontosaurus* cf. *trigonodon*), eastern England. Only recently discovered, it has poor ammonite control. Microfossils, indicate early-Toarcian age, while fragments of diverse, larger organisms, provide details of the palaeoenvironment, e.g. fish, shark,...



...echinoid, ophiuroid, crinoid, bivalve, brachiopod, gastropod, etc., etc.

Toarcian

Early

181





A-B. Kinkelinella sermoisensis, C. Cytheropteron gwashense,
D-E. Ektyphocythere intrepida, F. Trachycythere sp.,
G. Tanycythere sp., H. Eucytherura transversiplicata,
I-J. Procytherura mediocostata, K. Conorboides sp.